Solution to Math4230 Tutorial 9

1. Consider the problem

$$
\min f_1(x) - f_2(Qx)
$$

s.t. $x \in \mathbb{R}^n$,

where $Q \in \mathbb{R}^{m \times n}$ and $f_1 : \mathbb{R}^n \mapsto (-\infty, \infty]$ and $f_2 : \mathbb{R}^m \mapsto [-\infty, \infty)$ are extended real-valued functions. Show that the corresponding max crossing problem is

$$
\max h_2(\mu) - h_1(Q^T \mu)
$$

s.t. $\mu \in \mathbb{R}^n$,

where $h_1(Q^T\mu) = \sup_{y \in \mathbb{R}^n}$ $\{y^T Q^T \mu - f_1(y)\}, h_2(\mu) = \inf_{z \in \mathbb{R}^m} \{z^T \mu - f_2(z)\}.$ **Hint:** Consider $F(x, u) = f_1(x) - f_2(Qx + u)$.

Solution:

Here $p(\mu) = \inf_{y \in \mathbb{R}^n} F(y, \mu)$ and

$$
q(\mu) = \inf_{z \in \mathbb{R}^m} \{p(z) + \mu^T z\}
$$

=
$$
\inf_{(y,z) \in (\mathbb{R}^n, \mathbb{R}^m)} \{f_1(y) - f_2(Qy + z) + \mu^T z\}
$$

=
$$
\inf_{(y,z) \in (\mathbb{R}^n, \mathbb{R}^m)} \{f_1(y) - f_2(z) + \mu^T z - \mu^T Qy\}
$$

=
$$
\inf_{y \in \mathbb{R}^n} \{f_1(y) - \mu^T Qy\} + \inf_{z \in \mathbb{R}^m} \{f_2(z) + \mu^T z\}
$$

=
$$
h_2(\mu) - h_1(Q^T \mu)
$$

2. Consider the problem

$$
\min f(x)
$$

s.t. $x \in X$, $e_i^T x = d_i$, $i = 1, \dots, m$,

where $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a convex function, X is a convex set, and e_i and d_i are given vectors and scalars, respectively. Consider the min common/max crossing framework where \mathbf{M} is the subset of \mathbb{R}^{m+1} given by

$$
M = \{ (e_1^T x - d_1, \cdots, e_m^T x - d_m, f(x)) \mid x \in X \}.
$$

(a) Derive the corresponding max crossing problem;

(b) Show that the corresponding set \overline{M} is convex.

Solution

(a) The corresponding max crossing problem is given by

$$
q^*=\sup_{\mu\in\Re^m}q(\mu),
$$

where $q(\mu)$ is given by

$$
q(\mu) = \inf_{(u,w)\in M} \{w + \mu'u\} = \inf_{x\in X} \left\{ f(x) + \sum_{i=1}^m \mu_i(e_i' x - d_i) \right\}.
$$

(b) Consider the set

$$
\overline{M} = \Big\{ (u_1, \ldots, u_m, w) \mid \exists x \in X \text{ such that } e'_i x - d_i = u_i, \ \forall i, \ f(x) \leq w \Big\}.
$$

We show that \overline{M} is convex. To this end, we consider vectors $(u, w) \in \overline{M}$ and $(\tilde{u}, \tilde{w}) \in \overline{M}$, and we show that their convex combinations lie in \overline{M} . The definition of \overline{M} implies that for some $x \in X$ and $\tilde{x} \in X$, we have

$$
f(x) \leq w, \qquad e'_i x - d_i = u_i, \quad i = 1, \dots, m,
$$

$$
f(\tilde{x}) \leq \tilde{w}, \qquad e'_i \tilde{x} - d_i = \tilde{u}_i, \quad i = 1, \dots, m.
$$

For any $\alpha \in [0,1],$ we multiply these relations with α and 1- α , respectively, and add. By using the convexity of f , we obtain

$$
f\big(\alpha x + (1 - \alpha)\tilde{x}\big) \leq \alpha f(x) + (1 - \alpha)f(\tilde{x}) \leq \alpha w + (1 - \alpha)\tilde{w},
$$

$$
e'_i\big(\alpha x + (1 - \alpha)\tilde{x}\big) - d_i = \alpha u_i + (1 - \alpha)\tilde{u}_i, \quad i = 1, ..., m.
$$

In view of the convexity of X, we have $\alpha x + (1 - \alpha)\tilde{x} \in X$, so these equations imply that the convex combination of (u, w) and (\tilde{u}, \tilde{w}) belongs to \overline{M} , thus proving that \overline{M} is convex.

3. Let $f : X \mapsto [-\infty, \infty]$ be a function. Prove that:

$$
\inf_{x \in X} f(x) = \inf_{x \in X} (\text{cl } f)(x) = \inf_{x \in \mathbb{R}^n} F(x),
$$

where $F(x) = \inf \{ w | (x, w) \in \text{conv}(\text{epi}(f)) \}.$ Furthermore, any vector that attains the infimum of f over X also attains the infimum of $\mathrm{cl} f$ and F.

Solution Please refer to proof of Proposition 1.3.13 in Appendix.

Appendix Proof of Proposition 1.3.13: **Proof:** If epi(f) is empty, i.e., $f(x) = \infty$ for all x, the results trivially hold. Assume that epi(f) is nonempty, and let $f^* = \inf_{x \in \mathbb{R}^n} (cl f)(x)$. For any sequence $\{(\overline{x}_k, \overline{w}_k)\}\subset \text{cl}(\text{epi}(f))$ with $\overline{w}_k \to f^*$, we can construct a sequence $\{(x_k, w_k)\}\subset \text{epi}(f)$ such that $|w_k - \overline{w}_k| \to 0$, so that $w_k \to f^*$. Since $x_k \in X$, $f(x_k) \leq w_k$, we have

$$
\limsup_{k\to\infty} f(x_k) \le f^* \le (\text{cl } f)(x) \le f(x), \qquad \forall \ x \in X,
$$

so that

$$
\inf_{x \in X} f(x) = \inf_{x \in X} (\operatorname{cl} f)(x) = \inf_{x \in \mathbb{R}^n} (\operatorname{cl} f)(x).
$$

Choose $\{(x_k, w_k)\}\subset \text{conv}(\text{epi}(f))$ with $w_k \to \inf_{x \in \mathbb{R}^n} F(x)$. Each (x_k, w_k) is a convex combination of vectors from epi(f), so that $w_k \geq$ $\inf_{x \in X} f(x)$. Hence $\inf_{x \in \mathbb{R}^n} F(x) \geq \inf_{x \in X} f(x)$. On the other hand, we have $F(x) \leq f(x)$ for all $x \in X$, so it follows that $\inf_{x \in \mathbb{R}^n} F(x) =$ $\inf_{x \in X} f(x)$. Since cl f is the closure of F, it also follows (based on what was shown in the preceding paragraph) that $\inf_{x \in \mathbb{R}^n} (cl f)(x) = \inf_{x \in \mathbb{R}^n} F(x)$. We have $f(x) \geq (c f)(x)$ for all x, so if x* attains the infimum of f,

$$
\inf_{x\in\Re^n}(\operatorname{cl} f)(x)=\inf_{x\in X}f(x)=f(x^*)\geq(\operatorname{cl} f)(x^*),
$$

showing that x^* attains the infimum of cl f. Similarly, x^* attains the infimum of F and cl f . Q.E.D.